Problemas de Química. 1º de Grado en Ingeniería Química. Tema 19

Si cree que necesita datos adicionales para resolver los problemas búsquelos en las tablas de los libros.

- 1. A 600 K, la descomposición del NO_2 es de segundo orden, con una velocidad de 2.0×10^{-3} mol L^{-1} s⁻¹ cuando la concentración de NO_2 es 0.080 M. a) Escribir la ecuación de velocidad. b) Calcular la constante de velocidad. c) ¿Cuál será la velocidad cuando la concentración de NO_2 sea 0.020 M?
- 2. La reacción CO (g) + NO₂ (g) \rightarrow CO₂ (g) + NO (g) a 400 °C es de primer orden respecto a ambos reactivos. La constante de velocidad es 0.50 L mol⁻¹ s⁻¹. ¿Para qué concentración de CO se hace la velocidad igual a 0.10 mol L⁻¹ s⁻¹, si la concentración de NO₂ es: a) 0.40 mol L⁻¹, b) igual a la de CO?
- 3. En el estudio de la reacción de hidrólisis alcalina del acetato de etilo según la ecuación: CH₃COOCH₂CH₃ + H₂O → CH₃COOH + CH₃CH₂OH se han obtenido los siguientes datos:

Experimento	[CH ₃ COOCH ₂ CH ₃] _{inic} /mol L ⁻¹	$[OH^-]_{inic}/mol\ L^{-1}$	$v_{inic}/mol L^{-1} s^{-1}$
1	1.0×10^{-3}	1.0×10^{-2}	1.3×10^{-6}
2	1.0×10^{-3}	5.0×10^{-3}	6.5×10^{-7}
3	5.0×10^{-2}	1.0×10^{-3}	6.5×10^{-6}
4	1.0×10^{-2}	1.0×10^{-2}	1.3×10^{-5}

Determinar: a) la ley de velocidad, b) el orden total de la reacción, c) la constante específica de la reacción, d) la velocidad inicial si [CH₃COOCH₂CH₃] $_{inic} = 3.0 \times 10^{-3}$ M y [OH⁻] $_{inic} = 6.0 \times 10^{-2}$ M

4. Con los siguientes datos, determinar la expresión de la ley de velocidad para la reacción: $2A + B_2 + C \longrightarrow A_2B + BC$

Experimento	[A] _{inic} /mol L ⁻¹	$[B_2]_{inic}/mol\ L^{-1}$	[C] inic/mol L ⁻¹	v _{inic} /mol L ⁻¹ s ⁻¹
1	0.20	0.20	0.20	2.4×10^{-6}
2	0.40	0.30	0.20	9.6×10^{-6}
3	0.20	0.30	0.20	2.4×10^{-6}
4	0.20	0.40	0.60	7.2×10^{-6}

- 5. La descomposición del bromuro de etilo es una reacción de primer orden con $t_{1/2} = 650$ s a 720 K. Calcular: a) la constante de velocidad, b) el tiempo necesario para que la concentración de C_2H_5Br descienda de 0.050 M a 0.0125 M y c) la concentración de C_2H_5Br una hora después de transcurrido el tiempo calculado en b).
- 6. La vida media de la descomposición de la propanona (reacción de primer orden) es 5.8 s a 650 °C. Calcular la constante de velocidad.
- 7. La dimerización del butadieno: $2 C_4H_6 \rightarrow C_8H_{12}$, es una reacción de segundo orden. A 600 K se introducen 0.169 moles de butadieno en un recipiente de 10 L y al cabo de 30.0 minutos

- quedan 0.114 moles de butadieno. Calcular la constante de velocidad. ¿Cuánto tiempo debe transcurrir para que la reacción se haya completado en un 90%?
- 8. La energía de activación para una reacción tiene un valor de 23.2 kcal/mol, y la constante de velocidad a 25 °C es 4.28×10^{-3} s⁻¹. Calcular la constante de velocidad a 50 °C.
- 9. Representar los diagramas de energía correspondientes a las tres reacciones químicas siguientes:

Reacción	$E_{a,directa}$ /kJ mol ⁻¹	$E_{a,inversa}$ /kJ mol ⁻¹
1	50	70
2	85	25
3	12	40

- a) ¿Qué sistema tendrá la reacción más rápida?
- b) ¿Cuál es el valor de ΔH de cada reacción?
- c) ¿Para qué sistemas será endotérmica la reacción directa?
- 10. En el estudio de la descomposición de HI (g) en I₂ (g) y H₂ (g), se determinó experimentalmente que la reacción era de primer orden. Por otra parte, se obtuvieron los siguientes resultados experimentales:

T/ °C	$[HI]_0 / mol L^{-1}$	$t_{1/2}$ / min
427	0.100	58.82
508	0.100	4.20

Calcular:

- a) Las constantes de velocidad a 427 y 508 °C.
- b) La energía de activación.
- c) La velocidad de reacción a 427 °C si [HI]₀ = 0.050 M
- 11. Se dice que para la mayoría de las reacciones que transcurren a temperatura ambiente, la velocidad de reacción se duplica al aumentar 10 °C la temperatura. ¿Cuál será la energía de activación de una reacción en la que suceda exactamente eso al pasar de 20 a 30 °C?

Soluciones

1. a)
$$v = k [NO_2]^2$$
, b) $k = 0.31 \ L \ mol^{-1} \ s^{-1}$, c) $1.2 \times 10^{-4} \ mol \ L^{-1} \ s^{-1}$.

2. a)
$$0.50 \text{ mol } L^{-1}$$
, b) $0.45 \text{ mol } L^{-1}$.

$$3. \ a) \ v = k \ [C_4 H_8 O_2] \ [OH^-], \ b) \ 2, \ c) \ 0.13 \ L \ mol^{-1} \ s^{-1}, \ d) \ 2.3 \times 10^{-5} \ mol \ L^{-1} \ s^{-1}.$$

4.
$$v = (3.0 \times 10^{-4} L^2 mol^{-2} s^{-1}) [A]^2 [C]$$

5. a)
$$1.07 \times 10^{-3} \text{ s}^{-1}$$
, b) 1300 s , c) $2.69 \times 10^{-4} \text{ mol } L^{-1}$.

6.
$$0.12 \text{ s}^{-1}$$

7.
$$0.0079 \text{ L mol}^{-1} \text{ s}^{-1}$$
, 9.3 horas.

8.
$$8.8 \times 10^{-2} \text{ s}^{-1}$$

10. a)
$$1.18 \times 10^{-2} \text{ y } 0.165 \text{ min}^{-1}, \text{ b) } 35.4 \text{ kcal mol}^{-1}, \text{ c) } 5.9 \times 10^{-4} \text{ mol } L^{-1} \text{ min}^{-1}.$$